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Numerical and experimental studies for crack detection in beam employing transverse
impact are presented. In the numerical study, a beam model of wave propagation is
developed to calculate the time history of beam response before, over and after the crack
region. It is expected that the resulting wave in the beam will be scattered by the crack and
will carry information on the location and geometry of the crack. Experiments using
a scanning laser vibrometer on specimens containing simulated crack are then conducted to
verify the numerical results. Comparison study between the numerical results and
experimental observations are conducted; good correlation between theory and experiment
is observed. The beam model of wave propagation and adaptive multilayer perceptron
networks (MLP) are then used for inverse identi"cation of crack parameters (i.e., crack
location, depth and length) in the beams. Time-domain displacement responses calculated
using the present beam model containing predetermined crack parameters are used as
training data for the MLP. Once the MLP is trained, the MLP networks are then employed
for inverse determination of an unknown crack in a beam using experimental displacement
responses measured with a scanning laser vibrometer. Examples show that the procedure
performs well for the determination of a wide range of values for the location, depth and
length of the crack.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Cracks in metallic members and delaminations in laminated material are typical examples
of #aws that are commonly found in beam structures. Many studies on the dynamics of
#awed structural members have been reported. It has been reported [1}3] that the presence
of a crack would alter the local #exibility of the structure at the #awed region, and
subsequently lead to premature structural failure. The adverse e!ect on the dynamic
behaviour of defects can be utilized as an e!ective means for identifying and assessing both
the location and size of crack. Therefore, the development of appropriate methods for early
crack detection becomes very important. Many reports on the dynamic behaviour of #awed
structures have been published for the eventual purpose of developing the appropriate
NDT tools; and the following is a brief review of recent theoretical and experimental
studies.
Penn et al. [4] have used the free vibration method to detect delamination in thick

composites. The vibration is initiated by a single mechanical impact and is sensed by
surface-bonded piezoelectric "lm elements. Even though the method is attractive because of
its simplicity, it is found that the method is relatively insensitive for detecting small-to-
medium delaminations in plates. Springer et al. [5] have proposed a method based on the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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structural frequency response for non-destructive inspection of structural members; from
the various numbers of experiments conducted, the technique is suitable for accurate
determination of the location and size of damage.
In numerical analysis, Roche and Accorsi [6] have developed a new delaminated beam

element for analyzing laminated beams containing delaminations. The advantage of the
element is that it allows for modelling delaminations anywhere in the structure using
a single "nite element model. Results using the new element show good agreement with
those obtained by constructing frame models using conventional laminated beam element.
Using a simpler approach, Mujumdar et al. [7] proposed a new analytical model based on
the Bernoulli}Euler beam theory. They assumed that at the #awed region, beam sections at
both sides of the #aw are constrained to have identical transverse deformations and remain
in contact throughout the vibration. The numerical results presented bring out the e!ects of
#aw size, of its spanwise and thicknesswise location, of typical boundary conditions and of
mode number on the frequencies and mode shapes. It was indicated that the predominant
factors governing the extent of weakening produced by the #aw are the magnitude of shear
force distribution and the average curvature of the beam over the delamination region.
The strip element method (SEM) has proven to be very e$cient in detecting and locating

the presence of a simple crack in materials [8, 9]. The primary concern with SEM is on the
non-re#ected boundary condition, which is used in the model in order to minimize
re#ection at the boundaries. However, in practical situations, this condition might not be
easily satis"ed; hence the need to explore other techniques that are independent of the
boundary conditions.
One way is to excite the test structure with a transient force, and before the excitation

wave can interfere with the wave that is re#ected from the boundary of the structure, the
response of the structure is recorded. Based on this principle, Doyle [10] used impact force
and developed an inverse procedure combining the spectral element method and stochastic
genetic algorithm to determine the size and location of crack in a beam. The method
determines sti!ness changes by using the formulations that relate the crack size to a single
torsional sti!ness parameter. Combined with the experimental results, this simple approach
could indicate well the size and location of transverse cracks in beams. Prior to the work to
determine the size and location of crack using impact force, Doyle and Kamle [11, 12]
conducted a study of the transmission and re#ection characteristics of #exural waves at
structural discontinuities when a beam is impacted. Bernoulli}Euler beam model and a fast
Fourier transform (FFT) algorithm are used to characterize the dispersive #exural waves.
The results indicate that the presented model is adequate to track the wave as it passes
through the joint, hence it can be used to describe structural discontinuities. Then, Doyle
[13] used the frequency domain and the FFT analysis of the strain gauge measurements on
an impacted plate to infer the contact force history. Using this approach, good estimates of
the impact force on a composite plate can be obtained but to make the method more useful
it is necessary to extend the solution for general anisotropic material. Doyle [14, 15] has
also successfully used the phase information obtained from a spectral analysis of to
determine the location and time of initiation of an unknown dispersing pulse.
Motivated by these observations, a beam model analyzing transverse impact-wave

propagation in beams for the detection and assessment of cracks in beams are developed. In
this model, beam responses are investigated and analyzed in time domain. The major
advantage of beam model for solving the wave scattering problem is the much smaller
number of equations compared with the FEM and even the SEM. Consequently, much
shorter computing time is needed for solutions of comparable accuracy. The experimental
study is later on conducted using laser vibrometer to verify the numerical results. Beam
responses along its surface are observed for a very short interval of time before the



Figure 1. Geometry and modelling of a beam with a crack.
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longitudinal wave is re#ected by the boundary. Another numerical study by modelling
a "nite beam using "nite element model (FEM) is developed by Chee [16]. Linear,
two-dimensional, solid elements are used to create the model of #awless and #awed beams.
The #aw in the beam is modelled as a slot, in which the nodes of the elements around the
#aw are non-equivalence.
Comparison studies are then conducted between the beam model and laser

measurements prior to the application of MLP network for inverse determination of crack
in beams.

2. A BEAM MODEL OF FLEXURAL WAVE BY TRANSVERSE IMPACT

2.1. BASIC ASSUMPTIONS

In the present beam model of wave propagation, the beam is divided into four spanwise
regions, namely two crack regions separated by the crack and two in"nite regions one on
each side of the crack regions, as shown in Figure 1. Each region is modelled as a
Bernoulli}Euler beam.
The model is assumed as a thin beam and the e!ects of rotary inertia and shear

deformation are not taken into consideration. Based on Bernoulli}Euler beam assumptions,
this model can only be applied to beams in which the cross-sectional dimensions were small
in comparison to its length. By not taking into account the e!ects of the cross-sectional
dimensions on the frequencies and considering the actual beam cross-sectional dimensions
in comparison to its length, the analysis will be limited to low-velocity impact force. The
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solution for the entire cracked beam is obtained in terms of the solutions of all regions based
on the theory of Bernoulli}Euler beam by satisfying the appropriate boundary conditions at
the junctions between these regions.
The advantage of using in"nite region in the present beam model is that the result can be

compared to the experimental data with di!erent boundary conditions at the time before
the incidence wave is re#ected.

2.2. HOMOGENEOUS SOLUTION OF BEAMS

The governing equation of motion for in"nite regions free of external force can be
presented as
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where p is the normal contact pressure distribution between the two regions and P
�
is the

magnitude of the axial load in each region.
Regions 2 and 3 are set to have identical transverse displacements and they are assumed

to be free to slide over each other in the axial direction except at their ends. At any section
through the crack region (x
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equation (3), and adding it to equation (2), the governing equation can be written as
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For harmonic motion w
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where the subscript h denotes the homogeneous solution, � is the frequency, t is the time
and �

�
are the frequency parameters. Considering the radiation condition at each region, the

homogeneous solution for each region is given as
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where A
�
, B

�
, C

�
and D

�
are the undetermined amplitudes at each frequency of region i.

2.3. PARTICULAR SOLUTION

Consider that an impact force F is applied at the mid-span, x"0, of a beam. The force is
applied via an imaginary, rigid massless joint. By not taking into account the e!ect of
re#ected wave from the boundary, the beam can be considered as an in"nite beam. The free
body diagram of the impacted beam is shown in Figure 2.



Figure 2. Free body diagram for transverse impact in beam.
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The incidence transverse impact wave at x'0 can be expressed as

w
�
(x, t)"� A exp(!i�x#i�t)#� B exp(!�x#i�t), (7)

where A and B are undetermined coe$cients, � is the frequency parameter, depending on
the dimensions and material properties of the beam, the subscript p denotes the particular
solution. Since the shear force <

�
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�
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By substituting for the moment}de#ection and the moment}shear force relations in terms of
displacement, the wave solution can be written as
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The transfer function for the wave displacement is

GK (x, �)"�
!i

4EI��
[exp(!i�x)!i exp(!�x)]. (11)

The presence of exp(!�x) indicates a large contribution at x"0 that decays rapidly as
x increases. The transfer function depends on the reciprocal of �� and, consequently, on
����. Using the convolution theorem, the relation between force and displacement in time
domain can be presented as

w
�
(x, t)"F (x, t)*G(x, t). (12)

In this application, the discrete Fourier transform and its inverse are performed using the
FFT-function and the IFFT-function provided by the commercial software MATLAB.
Considering the "ne resolutions of the data and a quick-Fourier transform algorithm for
number of point equivalent with a power of two, the number of points being used is 2048.
The general solution, w, of the problem is thus

w (x, t)"w
�
#w

�
, (13)

where w
�
and w

�
are given by equations (6) and (12) respectively.

2.4. CONTINUITY CONDITIONS

In order to satisfy the compatibility of displacements and equilibrium of forces at the
junctions between the in"nite and crack regions, the conditions of continuity have to be
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applied at these junctions. The continuity conditions at the junction of x
�
"0 and x

�
"0

are as follows:
1. Continuity of transverse displacement

w
�
"w

�
. (14)

2. Continuity of normal slope
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The compatibility of transverse displacement and slopes between regions 1 and 3 is
also automatically satis"ed with the assumption of w

�
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3. Continuity of shear forces
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4. Continuity of bending moments
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The continuity conditions at the junction x
�
"b, x

�
"0 are obtained by replacing w

�
and

x
�
by w

�
and x

�
, respectively, in equation (14)}(17).

Apart from the continuity of transverse displacement, slopes, bendingmoments and shear
forces, an additional axial load system of equal and opposite forces on the delaminated
regions is needed to maintain geometrical compatibility at the ends of these regions in
the same plane. By applying the continuity of axial displacement on the junctions and
neglecting the longitudinal inertia terms, the total axial force on the midplane of each of
these regions can be obtained as
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By using this expression for the axial force term, equations (14)}(17) and the corresponding
equations at the second junction can be written as a set of eight simultaneous linear
homogeneous equations in the eight unknown constants. The frequencies and their
wave propagation mode can be obtained as the eigenvalues and eigenvectors of this
equation set.

3. EXPERIMENTAL STUDY

Experiments are conducted on four aluminium beams (A1}A4) of 1000 mm length,
25)4 mmwidth and 4)5 mm thickness. Beam A1, which has no crack, is used as the reference
beam. Cracks of 35 mm (beam A2), 45 mm (beam A3) and 55 mm (beam A4) length and at
5 mm below the surface are arti"cially created with a 0)25 mm-diameter milling cutter at
a distance of 600 mm from the left end of the beam. The schematic diagram of the
experimental set-up is shown in Figure 3.
Impact force is applied at the mid-span of the specimen in order to obtain the maximum

time of observation before the incidence wave is re#ected by the boundary. The impact
point is maintained 100 mm away from the left edge of the crack. Impact on the beam is
achieved by swinging a mechanical pendulum whose end is attached to a steel ball. The
diameter of the steel ball is 15)21 mm and 9)98 mmand the angle swing is 303. The input
impact force is measured using a Kistler transducer type 8720A500 attached to the steel
ball, and the response of the beam in terms of velocity on its surface is measured using



Figure 3. Schematic diagram of experimental set-up.

Figure 4. Time history of impact forces using steel ball of 15)21 mm diameter: **, #awless; - - - -, #aw.
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a Polytec scanning laser vibrometer. The signals from the force transducer and the laser
vibrometer are then discretized and analyzed using a computer.
The fastest propagated wave in beams is the longitudinal wave that propagates at

5230 m/s.With the distance of 500 mm for the outgoing wave to travel and 500 mm distance
for the re#ected wave to travel, the fastest wave needs 191 �s to propagate, to be re#ected
and to arrive at the impact point. It means that the e!ective observation time should be less
than 191 �s started from the instance of excitation.
The measured time history and calculated frequency domain of the excitation force

generated by the 15)21 mm diameter steel ball on the #awless beam A1 and #awed beam A2
are shown in Figures 4 and 5 respectively. It is observed that the time period of the
generated impact force is 96 �s. Figure 4 also shows that the shape of the recorded force
time history for the #awless beam A1 is the same as that of the #awed beam A2.



Figure 5. Frequency domain of force generated using steel ball of 15)21 mm diameter.

Figure 6. Time histories of beam responses under excitation from steel ball of 15)21 mm diameter.**, #awless;
- - - - -, #aw. (a) Beam response 80 mm from impact point (left-hand side of the crack); (b) Beam response 117)5 mm
from impact point (above the crack); (c) Beam response 155 mm from impact point (right-hand side of the crack).
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Figure 7. Time history of impact forces using steel ball of 9)98 mm diameter:**, #awless; - - - - -, #aw.

Figure 8. Frequency domain of force generated using steel ball of 9)98 mm diameter.
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With the use of the 15)21 mm diameter steel ball, the time history response of the beam at
points located 80, 117)5 and 135 mm from the point of impact are obtained and shown in
Figure 6(a), 6(b) and 6(c) respectively. As shown in Figure 6(a) and 6(c), the responses of the
#awless beam A1 and the #awed beam A2 at the left-hand and right-hand side of the crack
do not indicate any signi"cant di!erences. Compared with the #awless beam A1 response,
#awed beam A2 response at the middle of the cracked region, as shown in Figure 6(b),
indicates little di!erences especially at the time after 300 �s. The inconspicuous di!erence in
response between the #awless beam A1 and the #awed beam A2 might be due to the
frequency range of the excitation force being too low (Figure 5).
To overcome this limitation, one uses a smaller steel ball (9)98 mm in diameter). The

measured time history and the calculated frequency domain of excitation force generated by
the steel ball for the #awless beam A1 and the #awed beam A2 are shown in Figures 7 and 8
respectively. It is seen that the time period of the generated impact force is 75)8 �s. This
indicates that the use of a smaller ball will generate a sharper impact force and a higher
frequency range of the excitation force. Hence, the use of a smaller ball might improve the
performance of the method for crack identi"cation.



Figure 9. Time histories of beam responses under excitation from steel ball of 9)98 mm diameter.**, #awless;
- - - - -, #aw. (a) Beam response 80 mm from impact point (left-hand side of the crack); (b) Beam response 117)5 mm
from impact point (above the crack); (c) Beam response 155 mm from impact point (right-hand side of the crack).
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With the use of the 9)98 mm diameter steel ball, the time history of beam response at
points located 80, 117)5 and 135 mm from the point of impact are shown in Figure 9(a), 9(b)
and 9(c) respectively. The results in Figures 6 and 9 also indicate that the beam response is
dispersive. As shown in Figure 9(a) and 9(c), the presence of the crack can generate
additional small oscillations to the beam responses at the left-hand and the right-hand side
of the crack after reaching the minimum point of the response at 208 and 274 �s
respectively. Responses at the middle of the cracked region, as shown in Figure 9(b), indicate
a very signi"cant di!erence between the #awless and the #awed beams. The response of the
#awed beam A2 shows a tremendous oscillation when the incidence wave propagates
through the cracked region. These evidences are then used as a tool to identify the presence
of the crack.

4. COMPARISON STUDY

The transfer function of the wave displacement, GK , calculated using the beam model
for wave propagation, is shown in Figure 10. Relating the transfer function for wave
displacement with the frequency domain of the excitation force indicates that the force
generated with the use of the smaller ball may cover a wide frequency range of the transfer
function; hence the ability to detect cracks is enhanced.



Figure 10. Transfer function of the wave displacement, G) .
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Numerical and experimental time history of #awless beam A1 responses at points located
80, 117)5 and 155 mm from the point of impact are presented in Figure 11, the numerical
responses being calculated using beam model and FEM and the experimental responses
being taken from laser measurement. The #awless beam A1 responses calculated using
the beam model are presented by the particular solution described in equation (12). It
shows that the results of the present beam model agree reasonably well with the FEM
and experimental results until the wave re#ected from the boundary interferes with
the incidence wave. As the FEM model is developed based on clamp}clamp boundary
condition, its response indicates oscillation after the incidence wave is re#ected by
the boundary.
The interference between the re#ected and incidence waves is indicated by the oscillation

on the beam responses beyond 400 �s. These oscillations do not appear in the beam model
responses due to the assumption of an in"nite beam; in which case the incidence wave will
not be re#ected back by the boundary (the end of the beam). In all the cases, the
experimental results match the beam model results better than the FEM results. As shown
in Figure 11, a smooth beam response with no oscillation before interference between
incidence and re#ected waves occurs can be used as an indication of a #awless beam.
Numerical and experimental time history of #awed beam A2 responses at points located

80, 117)5 and 155 mm from the point of impact are shown in Figure 12. Results obtained
from the present beam model agree reasonably well with both the FEM and the
experimental results for #awed beams, even though interference of the incidence and
re#ected waves do cause di!erences between the beam model results and experiments.
Besides the oscillation due to interferences, there is a small oscillation on the beam response
at the left-hand and the right-hand side of the crack, as shown in Figure 12(a) and 12(c). The
oscillation becomes more prominent when the response is calculated at the middle of the
crack as shown in Figure 12(b). These results can be used as a clear indication of the
presence of a crack.



Figure 11. Comparison study of time history of #awless beam response from beam model, FEM and laser
measurement.**, beam model; } } -, FEM; } - } - }, laser. (a) Time history of #awless beam response 80 mm from
excitation point; (b) Time history of #awless beam response 117)5 mm from excitation point; (c) Time history of
#awless beam response 155 mm from excitation point.
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5. INVERSE CRACK DETERMINATION USING BEAM MODEL AND MLP

The comparison studies indicate that the beam model results agree reasonably well with
the experiment. Their results indicate that time domain response is perturbed due to the
presence of crack, inferring that time-domain response may be used to locate and size



Figure 12. Comparison study of time history of #awed beam response from beam model, FEM and laser
measurement.**, beam model; } } } }, FEM; } } -, laser. (a) Time history of #awed beam response 80 mm from
excitation point; (b) Time history of #awed beam response 117)5 mm from excitation point; (c) Time history of
#awed beam response 155 mm from excitation point.
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delaminations in beams. After extensive comparison studies [17] between the beam model
and experimental results; the beam model is then used together with the adaptive MLP for
inverse identi"cation of crack parameters in the beams.
Figure 13 illustrates the MLP network for detecting crack in beam. It includes (1) initial

training of the MLP model using the elaborate training data, and (2) reconstruction of



Figure 13. Strategy for training and application of MLP network.

TABLE 1

Discrete values of crack parameters in time domain analysis

Location, d
�

20/H !17)5/H !55/H

Depth, d
�

5/H 20/H
Length, a

�
35/H 45/H 55/H

Note. H"4)5 (unit: mm).
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the crack using the trained MLP model by inputting the experimental time-domain
displacement response of the beam. If the displacement response calculated from the
reconstructed crack parameters compared with the experimental data do not satisfy the
Euclidean criterion that will be described later, theMLP networks will be retrained in order
to obtain another set of improved delamination parameters. More details about the MLP
and its parameters are described by Xu et al. [18], Mahmoud and Kiefa [19], Rhim and
Lee [20].
The input for MLP is taken from beam model responses of 40 points starting from the
"rst peak response until the response at 350 �s. This training data correspond with the
displacement response that has not been interfered by the re#ected wave, hence the good
correlation between beam model results and experiment can be well maintained. The
number of neurons in the outer layer of MLP is 3 that represent the reconstructed crack
parameters P"�d

�
, d

�
, a

�
) a

�
and d

�
denote the length of the crack and its depth from the

upper surface of the beam, d
�
denotes the distance between the measurement point and the

left-hand edge of the crack (see Figure 1). Using correlation analysis between the output of



TABLE 2

¹he con,guration of time domain training data for M¸P

Location, d
�

Death, d
�

Length, a
�

Actual (� 1/H) Normalized Actual (�1/H) Normalized Actual (� 1/H) Normalized

20)0 0)98 0)00 0)00 0)00 0)00
!55)00 0)07 0)00 0)00 0)00 0)00
!17)50 0)52 5)00 0)23 35)00 0)58
!55)00 0)07 5)00 0)23 35)00 0)58

20)00 0)98 20)00 0)91 35)00 0)58
!55)00 0)07 20)00 0)91 35)00 0)58

20)00 0)98 5)00 0)23 45)00 0)74
!17)50 0)52 5)00 0)23 45)00 0)74
!55)00 0)07 5)00 0)23 45)00 0)74

20)00 0)98 20)00 0)91 45)00 0)74
!55)00 0)07 20)00 0)91 45)00 0)74

20)00 0)98 5)00 0)23 55)00 0)91
!17)50 0)52 5)00 0)23 55)00 0)91

20)00 0)98 20)00 0)91 55)00 0)91
!17)50 0)52 20)00 0)91 55)00 0)91
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neurons in the hidden layers, the number of neurons are assigned to be 24 and 9 for the 1st
and 2nd hidden layers respectively. The discrete values of crack parameters are presented in
Table 1.
Considering the completeness of the sample space, 15 combinations of crack parameters

are used as training data for the MLP networks. Over the training process, the values
learning rate, �"2)0 and momentum rate, 	"0)5 are used in the modi"ed back
propagation algorithm. The actual and normalized training data of crack parameters are
presented in Table 2. For the initial training process, the optimized MLP networks have
satis"ed the given convergence criterion after 14 751 iterations.
After the initial training of the MLP model, reconstruction of delamination parameters

begins by inputting the experimental displacement response U
�
(x, z) measured from the

scanning laser vibrometer into the MLP network. The output of the MLP model would be
the reconstructed crack parametersP

�
. These reconstructed parameters are then inputted to

the beam model to produce a set of calculated displacement response U
�
(x, y). Comparison

between the reconstructed displacement responses U
�
(x, y). Comparison between the

reconstructed displacement responses U
�
and the measured ones U

�
are calculated using

Euclidean criterion as follows:

Err"
U
�
!U

�


�
. (19)

If the value of Err exceeds the permissible error E
�
"20%, then theMLP network will be

retrained using the adjusted training samples that contain U
�
(x, y) and P

�
. The retrained

MLP model is then used to reconstruct the crack parameters again by inputting the
measured U

�
(x, z). This procedure would be repeated until Err)Ec, implying that the

reconstructed crack parameters would be able to produce the displacement responses that
are su$ciently close to the measured ones when inputted to the beam model.
As the results of the "rst training process, in general, the calculated delamination

parameters compared to the measured ones still do not satisfy the given Euclidean criterion.
The MLP networks are then retrained with the adjusted sample sets for reconstructing the



Figure 14. The converging of cracks parameters error reconstructed by the MLP.*�*, location (df), *�*,
depth (dc); *�*, length (ac). (a) Isotropic beam case of d

�
"!17)5/H, d

�
"5/H, a

�
"35/H; (b) Isotropic beam

case of d
�
"!17)5/H, d

�
"20/H, a

�
"45/H; (c) Isotropic beam case of d

�
"!20/H, d

�
"5/H, a

�
"55/H.

TABLE 3

Comparison between the actual and reconstructed crack parameters

Location, d
�

Depth, d
�

Length, a
�

Percentage of error

No. Measured Calculated Measured Calculated Measured Calculated Location Depth Length

1 20)00 19)91 0)00 0)04 0)00 0)07 !0)44 0)00 0)00
2 !17)50 !17)30 0)00 0)00 0)00 0)01 !0)13 0)00 0)00
3 !55)00 !54)58 0)00 0)00 0)00 0)01 !0)75 0)00 0)00
4 20)00 20)22 5)00 4)11 35)00 28)44 1)09 !17)12 !18)76
5 !17)50 !16)36 5)00 4)20 35)00 31)91 !6)50 !15)92 !8)84
6 !55)00 !54)41 5)00 4)38 35)00 35)60 !1)07 !12)40 1)73
7 20)00 20)10 20)00 17)73 35)00 34)52 0)51 !11)33 !1)38
8 !17)50 !16)22 20)00 19)66 35)00 33)49 !7)30 !1)70 !4)32
9 !55)00 !55)22 20)00 20)39 35)00 39)03 0)40 1)95 11)53
10 20)00 20)12 5)00 4)11 45)00 46)83 0)59 !17)72 4)06
11 !17)50 !18)22 5)00 4)63 45)00 48)97 4)11 !7)34 8)82
12 !55)00 !54)72 5)00 4)18 45)00 46)16 !0)51 !16)40 2)57
13 20)00 20)18 20)00 16)50 45)00 45)31 0)88 !17)50 0)70
14 !17)50 !17)20 20)00 19)75 45)00 45)01 !1)69 !1)23 0)03
15 !55)00 !55)23 20)00 20)15 45)00 45)39 0)42 0)73 0)87
16 20)00 19)96 5)00 4)49 55)00 55)27 !0)19 !10)28 0)49
17 !17)50 !17)83 5)00 5)35 55)00 56)94 1)89 6)96 3)52
18 !55)00 !55)10 5)00 5)93 55)00 54)68 0)18 18)67 !0)58
19 20)00 20)16 20)00 16)12 55)00 55)71 0)80 !19)40 1)29
20 !17)50 !17)48 20)00 20)02 55)00 54)94 !0)14 0)10 !0)11
21 !55)00 !54)89 20)00 19)85 55)00 54)88 !0)20 !0)76 !0)22
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crack parameters. For the second and third training, the optimized MLP networks have
satis"ed the given convergence criterion after 12 929 and 10 097 iterations respectively.
Figure 14 shows three samples of convergence processes of these crack parameters

reconstructed from the MLP networks. These results indicate that the error of the
reconstructed crack parameters decreases signi"cantly with the progress of the retraining
process.
The total comparison results between the actual and reconstructed delamination

parameters for 21 testing data are presented in Table 3. It is shown that the beam model of
wave propagation and MLP networks can correctly determine the location, the depth and
the length of crack over a wide range of crack parameters contained in the cracked
aluminium beam. For these cases, the percentage of errors between the measured and
calculated delamination parameters are less than !19)4%. High percentage errors are
found in the case of deep crack because the beammodel of wave propagation is applied well
only on a slender beam in which the e!ects of rotary inertia and shear deformation are not
taken into consideration. Hence, the application of this model for deep crack may
contribute more error to the prediction of crack parameters.

6. CONCLUSIONS

Four studies are carried out in this paper: (1) analytical study using a beam model for
wave propagation in a #awless and a #awed beam; (2) experimental study; (3) comparison
study between theoretical and experimental results and; (4) inverse crack determination
using beam model and MLP. The beam model results correlate well with the experiment
and FEM results. The results have also indicated that the presence of #aw may re#ect or
scatter the incidence transverse wave and generate a very signi"cant change in the pattern of
the beam response, thereby enabling detection of #aws in a beam.
The e!ectiveness of this method is greatly a!ected by frequency range of the impact force.

At high-frequency impact, a pronounced change in the beam response is observed; hence the
presence of a #aw in the beam is clearly revealed.
The beammodel of wave propagation in time domain andMLP networks have also been

applied and can correctly determine the location, the depth and the length of crack over
a wide range of crack parameters contained in the cracked aluminium beam. These results
indicate that this method is accurate and e$cient for quantifying the size and location of the
cracks in beams that are not too deep from the surface.
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